Showing posts with label CAN. Show all posts
Showing posts with label CAN. Show all posts

Monday, February 9, 2015

Arduino, CAN Bus and 29 bit extended IDs

I noticed in my blog traffic stats that people are searching for information about 29 bit CAN IDs and I have been curious about this topic myself. I haven't come across 29 bit CAN IDs in a vehicle until recently and seeing these extended IDs in use in a car made want to understand how to use them with Arduino boards and MCP2515 CAN controllers. I wrote a blog post back in October 2013 that covers how to send data between two Arduino boards using a CAN bus so you may want to check that out if you aren't familiar with how a CAN bus works. That post is available here. This post is specifically about using 29 bit CAN IDs with an Arduino and the MCP2515 CAN controller chip.

CAN Bus IDs


There are two types of CAN Bus IDs. In the first version of the CAN Bus spec (2.0A) the IDs were made up of 11 bits. These are also known as base frame format messages. This allows for message IDs between 0x000 and 0x7FF. Which works out to be 2048 possible CAN IDs.

Binary, Decimal and Hex representation of the max 11 bit ID
 As CAN Busses were added to heavy equipment and as vehicles became more complex those 2048 possible IDs were not enough to handle the increased number of sensors. CAN 2.0B was created which increased the size of IDs from 11 bits to 29 bits. CAN 2.0B allows for over 536 million different IDs. 29 bit messages are also known as extended frame format messages. 18 bits were added to the original 11 bits in an separate field in a CAN message. There is a flag in the message that signals if a message is an 11 bit or 29 bit message. 11 bit and 29 bit messages can coexist on the same CAN bus.

Binary, Decimal and Hex representation of the max 29 bit ID
There are some trade-offs with 29 bit CAN IDs though. The latency is increased, the messages use more bandwidth and error detection performance is decreased. But if you have run out of IDs I suppose these are worthwhile trade-offs.


11 bit code example


Let's take a look at a very simple example of using an MCP2515 CAN controller with an Arduino and 11 bit CAN IDs. I am using a Seeed Studio CAN-BUS Shield but the MCP2515 is just an SPI chip that can be wired up with minimal external components.
In this 11 bit example I am using a CAN ID of 0x07B in hex (123 in decimal).


Here you can see my receiver Arduino is receiving CAN messages with an ID of 123.



29 bit code example


Next let's look at an example of sending 29 bit CAN IDs. In this example I am using a CAN ID of 0x17F8140E in hex (or 402134030 in decimal).


Here you can see my receiver Arduino is receiving CAN messages with an ID of 402134030.



sendMsgBuf format

The key piece of this example code is the sendMsgBuf function. This function is part of the
MCP_CAN_lib. This is where messages are flagged as 11 bit or 29 bit.

11 bit: CAN.sendMsgBuf(0x07B, 0, 8, canMsg);

29 bit: CAN.sendMsgBuf(0x17F8140E, 1, 8, canMsg);


The format for this function is sendMsgBuf(can_id, id_type, dlc, data_buf)

can_id - id number for your message in hex or decimal.

id_type - flag for 11 or 29 bit message id. 0=11bit, 1=29bit

dlc - Number of bytes in the message data

data_buf - The data transmitted in the message.


If you are going to try out these examples you should download Cory Fowler's fork of the MCP_CAN_lib.


Resources

Sunday, February 1, 2015

CAN Bus to UART using an Adafruit Pro Trinket

I have been fighting with the onboard CAN controller on my BeagleBone Black trying to
get it to work properly for months. In the process I learned about pin muxing, bone-capemgr and compiling overlays. I was able to bring up the can0 interface and receive can messages with candump but the interface was unstable. It would randomly hang and stop receiving messages. If I tried to send anything with cansend I would get a kernel stack traces in dmesg and the can0 interface would hang.  I tried Angstrom, Ubuntu and the latest Debian images all with the same results. Maybe my BBB board has a hardware problem. It is one of the early Rev B boards. Or maybe I'm running into some sort of kernel driver bug. Whatever the issue I am done trying to figure out what the eff is wrong with it and I just want to move forward with my project. (and yes I was using a transceiver). I considered bypassing the onboard can controller and talking to a MCP2515 over SPI but that gets into compiling a custom kernel for the BBB and I don't want to use up a SPI port. I mention all of this because I know someone out there will say "why didn't you just use the onboard can controller". I tried and I am done fighting with it.

My attempt at using the CAN controller on
the BBB with an MCP2562 transceiver

What now?

Once I decided I wasn't going to get the onboard BBB can controller to work I started thinking about options. My first attempt at a workaround was an Arduino Uno with a Seeed CAN Bus shield connected to the BBB with a USB cable. I read the data from the serial port created over the USB connection. While this worked it was a bit bulky and fragile. The USB cable is much too big, the Uno with a shield is big and the Uno would reset when serial communication started (though there is a workaround for this).

I took a break from this project for a while and in the meantime I ordered a few Adafruit Trinkets and Pro Trinkets just to play around with. The Pro Trinket has the same microcontroller as the Uno but the board is much, much smaller.

Size comparison between Uno, Pro Trinket and Trinket.
(Photo credit: Adafruit)

Pro Trinket CAN to UART Converter

The Pro Trinket has SPI and UART plus a bunch of digital and analog pins. After playing around with the Trinket I realized I could build a CAN Bus to UART converter that would be able to push CAN data into the BBB over a UART. The BeagleBone is a 3.3volt device so I used the 3volt version of the Pro Trinket so I didn't have to use any level shifters. For the CAN Bus controller I used an MCP2515 and for the CAN transceiver I used an MCP2562. The MCP2515 connects to the Arduino using a SPI connection. Here is the circuit I came up with:



Here is a Fritzing breadboard diagram of the circuit:

The UART serial connection between the Arduino and the BeagleBone runs at 115,200 bps so you might drop a few packets on a very busy CAN bus running at 500kbps. My Digital Dashboard project is only going to have a few devices broadcasting CAN packets so the UART speed will be more than enough for my purposes. The current version only transmits CAN data to the BBB. It should be fairly trivial to connect the BBB UART1 TX to the RX on the Arduino. It would also need a bit of code to parse the message received on the UART and write it to the CAN bus. I'm planning on adding the functionality soon and I'll write up another post when I have that done. I'm planning on changing the Arduino code to use an External Interrupt so the Trinket can perform a few other functions instead of just polling for incoming messages.

The Arduino Code

The way this works is the MCP2515 has an INT (interrupt) pin that signals when a CAN message has been received. The INT pin drives Pin3 on the Arduino low and triggers it to read messages from the MCP2515 buffer. Once a message has been read from the MCP2515 buffer it is formatted into a NMEA-ish string that is written to the serial port and transmitted to the BBB on UART1.

Screenshot of CAN data coming in on UART1

 Here is the Arduino code:



Setting up the BeagleBone

The pins on the BeagleBone need to be configured to be used as a UART. I used Adafruit's python IO library to do this. When you install their library it will create the overlays needed to configure the pins. Follow the instructions on their learn site here: https://learn.adafruit.com/setting-up-io-python-library-on-beaglebone-black. Here is the code to receive the CAN messages on BBB UART1:


Costs

The price for these parts wasn't bad at all

Adafruit Pro Trinket 3v - $9.95
16Mhz Crystal - $1.12
Two 22pF ceramic capacitors - $0.66
MCP2515 CAN controller - $2.18
MCP2562 CAN transceiver - $1.12

Total: $15.03


Well that's it for now. Next I'm going to work on modifying the code to use External Interrupts and then see if I can get it setup to receive messages over the UART. I also need to get this thing moved from the breadboard and soldered on to some protoboard.




Resources
http://www.embedded-things.com/bbb/enable-canbus-on-the-beaglebone-black/
http://www.adafruit.com/product/2010
https://learn.adafruit.com/setting-up-io-python-library-on-beaglebone-black/uart
http://ww1.microchip.com/downloads/en/DeviceDoc/21801d.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/25167B.pdf

Thursday, September 25, 2014

Using the Seeed CAN-BUS shield with an Arduino Mega


The Seeed Studio CAN-BUS shield is designed specifically to be used with an Arduino Uno but with a simple modification you can use it with several other Arduino boards. I sourced this info from a few different forums and thought I would write up a complete post on exactly how to do this. The Seeed website had some info on how to use the shield with a Mega but their info was not complete and did not work for me. In this post I am going to show how to use the Seeed CAN-BUS shield with an Arduino Mega 2560.

The CAN-BUS shield incompatibility with Arduino boards other than the Uno arises from where Seeed chose to access the SPI pins. They used pins 11,12,13 to access SPI on the Uno. On the Mega the SPI pins are 50,51,52. A better design would have been to use the SPI pins on the ICSP header which is consistent on the Uno, Mega, Due and Leonardo but such is life and we have to work with what is available right now. Seeed's site does mention they are working on a 1.1 version of the board that moves SPI to the ICSP header.

Here is an Arduino Uno with the SPI pins labeled
Arduino Uno SPI pins


And here is an Arduino Mega 2560 with the SPI pins labeled
Arduino Mega 2560 SPI pins


Here is what the Seeed Studio CAN-BUS Shield looks like if you don't already own one
Seeed Studio CAN-BUS Shield v1.0


The mod

Here is how to modify the CAN-BUS Shield to work with a Mega. The basic overview of the mod is that we need to change the SPI pins that the CAN-BUS Shield is using. There are two ways to do this modification. One one is reversible and the other is more permanent. First the reversible method.

The reversible method is to bend three pins on the CAN-BUS Shield like this:


When you plug the shield into the Mega it will look like this:


With bent pins I was able to bend them back use the shield with an Uno again.

Now you need to use three jumper wires to connect the SPI pins on the shield to the SPI pins on the Arduino board. In my example I connected the wires to pins 50,51,52 on the Arduino because I only had male-male jumper wires. If you have male-female jumper wires you can connect to the ICSP header instead.

Jumper wire connections
Mega Pin Shield Pin SPI Desc
50 12 MISO
51 11 MOSI
52 13 SCK


Here is what it looks like with the jumper wires installed




I would recommend you use coryjfowler's MCP2515 library instead of the Seeed's because his fork of the library has a configureable SS pin but Seeed's version will work with this mod because they hard coded the SS pin as digital pin 10.

I then loaded up one of the examples and the shield started up correctly.


If you want to make this modification more permanent you can simply snip off the three pins instead of bending them.



I found some male-female jumper wires at Fry's Electronics yesterday. Here is what it looks like when using the ICSP headers


ICSP Pin Shield Pin SPI Desc
1 12 MISO
4 11 MOSI
3 13 SCK


Sources
http://arduino.cc/en/Reference/SPI
http://forum.arduino.cc/index.php?topic=123367.0
http://www.seeedstudio.com/forum/viewtopic.php?f=23&t=5172
http://www.seeedstudio.com/wiki/Talk:CAN-BUS_Shield
http://www.seeedstudio.com/wiki/CAN-BUS_Shield


[Updated 2014-09-29] - Added photos of shield with the pins snipped off. Also added photo showing the male-female jumpers with the ICSP header.

[Updated 2014-10-23] - Added table with pinouts for connecting the shield to the ICSP header.

Thursday, October 10, 2013

Arduino - Sending data over a CAN bus

I have been tinkering with CAN buses due to my interest in cars. It's fascinating to me that packets are flying around a modern vehicle controlling nearly everything. Gauges, lights, locks, engine sensors, etc. To have a better understanding of the basics of a CAN bus I wanted to build the simplest possible setup to send and receive CAN messages. I chose two Arduino Uno's with a Seeed Studio CAN-BUS shield attached to each Uno. The Seeed shield is very straight forward and inexpensive. The Sparkfun CAN-BUS shield has an SD card slot, LCD connector and GPS connector. All of which are cool but drive up the price and complexity. The Seeed shield only does CAN bus and includes screw terminals which are handy for testing.

Arduino Uno R3Seeed CAN-BUS Shield

What I wanted to do with this experiment was transmit the value of an analog pin hooked up to a linear potentiometer. The data would be sent from one Arduino to another over a CAN bus and then display that value on an LCD connected to the second Arduino. Here is a picture of my setup. (Ignore the Mega2560 above the LCD. It's not used here.)


And here is a Fritzing diagram minus the CAN-BUS shields.



CAN bus termination

A CAN bus requires 120 Ohm termination resistors at each end of the bus. The Seeed Studio shields have built in termination resistors. When you connect two Seeed CAN bus shields togther like I did in this example you will have a properly terminated CAN bus. If you plan on connecting into an existing CAN bus that already has termination you can disable the built in termination resistors. To disable termination you can cut trace P1 or you can desolder resistor R1.


Close up view of the Seeed CAN bus shield
 termination resistors.
**Note: I have recently discovered the Seeed Studio CAN-BUS shield v1.0 uses a 60 ohm termination resistor for R3. While that worked for this small demo I later ran into issues when trying to use this shield with other nodes on a CAN bus. This 60 ohm resistor caused me many hours of frustration. If you are going to use this shield with on a bus with multiple nodes I would recommend desoldering R3 and using the correct 120 ohm resistance at the ends of your bus. 

Connecting into an existing CAN bus

If you are planning on connecting into an existing CAN bus (like in a car) you need to remove/disable the termination resistor on the shield as explained above. The CAN bus in a vehicle already has termination resistors. Adding a new node with a termination resistor will cause errors and disrupt communication on the bus.

Another important step is to connect a common ground between your Arduino board and the vehicle. If you are connecting at the OBD2 port pin 5 provides a signal ground. If you can't find a signal ground wire a chassis ground will suffice.

CAN bus messages

So I should probably explain a bit about CAN bus messages. Each message is made up of an id and some data. The id's in hex start at 0x000 and go to 0x7FF or 0 to 2047 in decimal. In most systems lower id values are considered more important. The bus handles collisions by letting the lower id win the collision. The data can be between 1 and 8 bytes for each message. Each byte can have a value from 0 to 255 or in hex 0x00 to 0xFF. When you send a CAN bus message you transmit the id, how many bytes you are sending (this is called DLC) and the actual data. The receiver will only read the number of bytes you said should be in the message. So if you send a DLC of 4 but the message contains 8 bytes the receiver will only read the first 4 bytes. Eight bytes per message is a bit limiting but the tradeoff is the high reliability of the bus. So sometimes you have to be creative with stuffing data into those bytes. If the value you are sending is less than 255 you can just use a single byte. Larger numbers will require using multiple bytes. Ascii codes can be sent but only eight characters per message. Whatever method you use to stuff the data in will also have to be used to un-stuff the data on the receiver. In my simple example here I did some math to limit the range of values to 0-255. An analog pin produces values between 0-1024. I simply divided the result by four to give me data I could send in a single byte.
CAN buses can operate at several different speeds up to 1 Mbit/s. Typical rates are 100 kbit/s, 125 kbit/s and 500 kbit/s. Slower rates allow for longer length buses. All devices on a bus must transmit at the same speed. The CAN bus wikipedia page is a good place to start if you want to learn more about the CAN protocol.


Code

I started with the example code provided by Seeed and modified it to add in the LCD output on the 'receiver' device and added reading of the potentiometer on A0 for the value that is transmitted. They have basic examples for send and receive. You can find some good info on their wiki page. Their libraries are available here. On my Mac I created the directory ~/Documents/Arduino/libraries/CAN_BUS_Shield for the library files. I unzipped the file and copied over the .h and .cpp files into that new directory. The zip file also contains the send and receive examples.

Note that normally devices on a CAN bus are both receivers and transmitters of data. This is a simplified example where each device is only doing one task.



Sender code


Receiver code


Video




[Updated 2014-05-25: Noted value of A0 potentiometer in the Fritzing diagram]
[Updated 2014-07-21: Added section about termination resistors]
[Updated 2014-09-25: Added note about incorrect value of resistor R3 on Seeed's shield]
[Updated 2015-03-10: Added additional notes about termination resistors]
[Updated 2017-03-27: Added new section 'Connecting into an existing CAN bus']
[Updated 2018-06-15: Fixed broken links for Seeed-Studio wiki and libraries]